Wireless sensing without sensors - An experimental approach

نویسندگان

  • Pius W. Q. Lee
  • Winston Khoon Guan Seah
  • Hwee Pink Tan
  • Zexi Yao
چکیده

Motion and intrusion detection are often cited among various Wireless Sensor Network (WSN) applications. A typical configuration comprises clusters of wireless nodes equipped with motion sensors to detect human motion. Currently, the performance of WSN is subject to several constraints, mainly the phenomenon of radio irregularity and finite onboard computation/energy resources. In Radio Frequency (RF) propagation, radio irregularity rises to a higher level in the presence of human activity due to the absorption effect of the human body. In this paper, the feasibility of monitoring RF transmission for the purpose of intrusion detection is investigated. With empirical data obtained from the Crossbow TelosB platform in several different environments, the impact of human activity on the signal strength of RF signals in a WSN is evaluated. This paper offers a novel approach to intrusion detection by turning a constraint in WSN, namely radio irregularity, into an advantage for the purpose of intrusion detection. Unlike most related work, the “intruders” neither transmit nor receive any RF signals. By enabling existing wireless infrastructures to serve as intrusion detectors instead of deploying numerous costly sensors, this approach shows great promise for providing novel solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach

Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

A Hierarchy Topology Design Using a Hybrid Evolutionary Algorithm in Wireless Sensor Networks

Wireless sensor network a powerful network contains many wireless sensors with limited power resource, data processing, and transmission abilities. Wireless sensor capabilities including computational capacity, radio power, and memory capabilities are much limited. Moreover, to design a hierarchy topology, in addition to energy optimization, find an optimum clusters number and best location of ...

متن کامل

Topology Control in Wireless Sensor Network using Fuzzy Logic

Network sensors consist of sensor nodes in which every node covers a limited area. The most common use ofthese networks is in unreachable fields.Sink is a node that collects data from other nodes.One of the main challenges in these networks is the limitation of nodes battery (power supply). Therefore, the use oftopology control is required to decrease power consumption and increase network acce...

متن کامل

Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology

Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...

متن کامل

An Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach

Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009